Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
Asian J Surg ; 2023 Mar 21.
Article in English | MEDLINE | ID: covidwho-2286115

ABSTRACT

Surgery is the primary curative treatment of solid cancers. However, its safety has been compromised by the outbreak of COVID-19. Therefore, it is necessary to evaluate the safety of digestive tract cancer surgery in the context of COVID-19. We used the Review Manager software (v.5.4) and Stata software (version 16.0) for meta-analysis and statistical analysis. Sixteen retrospective studies involving 17,077 patients met the inclusion criteria. The data indicates that performing digestive tract cancer surgery during the COVID-19 pandemic led to increased blood loss(MD = -11.31, 95%CI:-21.43 to -1.20, P = 0.03), but did not increase postoperative complications(OR = 1.03, 95%CI:0.78 to1.35, P = 0 0.86), anastomotic leakage (OR = 0.96, 95%CI:0.52 to1.77, P = 0 0.89), postoperative mortality (OR = 0.65, 95%CI:0.40 to1.07, P = 0 0.09), number of transfusions (OR = 0.74, 95%CI:0.30 to 1.80, P = 0.51), number of patients requiring ICU care(OR = 1.37, 95%CI:0.90 to 2.07, P = 0.14), postoperative 30-d readmission (OR = 0.94, 95%CI:0.82 to 1.07, P = 0 0.33), total hospital stay (MD = 0.11, 95%CI:-2.37 to 2.59, P = 0.93), preoperative waiting time(MD = - 0.78, 95%CI:-2.34 to 0.79, P = 0.33), postoperative hospital stay(MD = - 0.44, 95%CI:-1.61 to 0.74, P = 0.47), total operation time(MD = -12.99, 95%CI:-28.00 to 2.02, P = 0.09) and postoperative ICU stay (MD = - 0.02, 95%CI:-0.62 to 0.57, P = 0.94). Digestive tract cancer surgery can be safely performed during the COVID-19.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.17.431750

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular immune response may prove to be essential for long-term immune protection against the novel coronavirus disease 2019 (COVID-19). To assess COVID-19-specific immunity in the population, we synthesized selected peptide pools of SARS-CoV-2 structural and functional proteins, including Spike (S), Membrane (M), Envelope (E), Nucleocapsid (N) and Protease (P) as target antigens. Survey of the T cell precursur frequencies in healthy individuals specific to these viral antigens demonstrated a diverse cellular immunity, including high, medium, low and no responders. This was further confirmed by in vitro induction of anti-SARS-CoV-2 T cell immune responses using dendritic cell (DC)/T cell coculture, which supported the corresponding T cell precursor frequencies in each of the individuals tested. In general, the combination of all five viral antigen pools induced the strongest cellular immune response, yet individual donors responded differently to different viral antigens. Importantly, in vitro restimulation of the T cells with the DC-peptides induced increased anti-viral immune responses in all individuals even in the no responders, suggesting that repeated antigen stimulation could elicit a broad protection in immune naïve population. Our analysis recapitulates the critical role of cellular immunity in fighting COVID-19 and the importance of analyzing anti-SARS-CoV-2 T cell response in addition to antibody response in the population. Importance Facing the rapid evolving SARS-CoV-2 variants in the world, current emphasis on antibody-producing vaccines needs a quick revisit. The virus-specific cellular immunity may prove to be essential for long-term protection against COVID-19. This study designed a series of antigenic peptides encompassing the conserved and/or essential domains of Spike (S), Membrane (M), envelope (E), Nucleocapsid (N) and Protease (P) as targets to assess Covid-19-specific immunity in the population. The results demonstrated a diverse cellular immunity, including high, medium, low and no responders. This was verified by in vitro generation of anti-SARS-CoV-2 T-cells from these subjects. The study suggested that individuals responded differently to the different viral antigens, and importantly, repeated stimulation could produce virus specific T cells in all individuals, including the no responders. This study illustrates the needs for assessing anti-viral cellular immunity in addition to antibody response in the general population.


Subject(s)
COVID-19
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-77845.v1

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular immune response may prove to be essential for long-term immune protection against the novel coronavirus disease 2019 (COVID-19). To assess COVID-19-specific immunity in the population, we synthesized selected peptide pools of SARS-CoV-2 structural and functional proteins, including Spike (S), Membrane (M), envelope (E), Nucleocapsid (N) and Protease (P) as target antigens. Survey of the T cell precursur frequencies in healthy individuals specific to these viral antigens demonstrated a diverse cellular immunity, including high, medium, low and no responders. This was further confirmed by in vitro induction of anti-SARS-CoV-2 T cell immune responses using dendritic cell (DC)/T cell coculture, which was consistent with the corresponding T cell precursor frequencies in each individual tested. In general, the combination of all five antigenic pools induced the strongest cellular immune response, and individual donors responded differently to different viral antigens. Importantly, a secondary in vitro booster stimulation of the T cells with the DC-peptides induced increased anti-viral immune responses in all individuals even in the no responders, suggesting that booster immunization in a vaccine scheme may elicit a broad protection in immune naïve population. Our analysis illustrates the critical role of cellular immunity in fighting COVID-19 and the importance of analyzing anti-SARS-CoV-2 T cell response in addition to antibody response in the population.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL